654 D. D. SLEATOR AND R. E. TARJAN

of the move-to-front list update rule [9, 30] and the development of a self-adjusting
form of heap [31]. Some of our results on self-adjusting heaps and search trees
appeared in preliminary form in a conference paper [28). A survey paper by the
second author examines a variety of amortized complexity results {35].

2. Splay Trees

We introduce splay trees by way of a specific application. Consider the problem of
performing a sequence of access operations on a set of items selected from a totally
ordered universe. Each item may have some associated information. The input 10
each operation is an item; the output of the operation is an indication of whether
the item is in the set, along with the associated information if it is. One way to
solve this problem is to represent the set by a binary search tree. This is a binary
tree containing the items of the set, one item per node, with the items arranged in
symmetric order: If x is a node containing an item i/, the left subtree of x contains
only items less than i and the right subtree only items greater than i. The symmetric-
order position of an item is one plus the number of items preceding it in symmetric
order in the tree,

The “search™ in “binary search tree” refers to the ability to access any item in
the tree by searching down from the root, branching left or right at each step
according to whether the item to be found is less than or greater than the item in
the current node, and stopping when the node containing the item is reached. Such
a search takes O(d) time, where d is the depth of the node containing the accessed
item.

If accessing items is the only operation required, then there are better solutions
than binary search trees, e.g., hashing. However, as we shall see in Section 3, binary
search trees also support several useful update operations. Furthermore, we can
extend binary search trees to support accesses by symmetric-order position. To do
this, we store in each node the number of descendants of the node. Alternatively,
we can store in each node the number of nodes in its left subtree and store in a
tree header the number of nodes in the entire tree.

When referring to a binary search tree formally, as in a computer program, we
shall generally denote the tree by a pointer to its root; a pointer to the null node
denotes an empty tree. When analyzing operations on binary search trees, we shall
use n to denote the number of nodes and m to denote the total number of
operations.

Suppose we wish to carry out a sequence of access operations on a binary search
tree. For the total access time to be small, frequently accessed items should be near
the root of the tree often. Our goal is to devise a simple way of restructuring the
tree after each access that moves the accessed item closer to the root, on the
plausible assumption that this item is likely to be accessed again soon. As an O(1)-
time restructuring primitive, we can use rotation, which preserves the symmetric
order of the tree. (See Figure 1.)

Allen and Munro [4] and Bitner [10) proposed two restructuring heuristics (see
Figure 2):

Single rotation. After accessing an item J in a node x, rotate the edge joining x
to 1ts parent (unless x is the root).

Move 1o root. After accessing an item i in a node x, rotate the edge joining x to
its parent, and repeat this step until x is the root.

N LT L <
C OS Y23

J

s o s 4 st 2

Self-Adjusting Binary Search Trees 655

rofate right

y — X FiG. 1. Rotation of the edge joining
X nodes x and y. Triangles denote sub-
¢ rofate left y y trees. The tree shown can be a subiree
- of a larger tree.
A B B ¢ .
single
rotation

e

move
to
root

FiG. 2. Restructuring heuristics. The node accessed isa.

Unfortunately, neither of these heuristics is efficient in an amortized sense: for
each, there are arbitrarily long access sequences such that the time per access is
O(n) [4). Allen and Munro did show that the move-to-root heuristic has an
asymptotic average access time that is within a constan! factor of minimum, but
only under the assumption that the access probabilities of the various items are
fixed and the accesses are independent. We seek heuristics that have much stronger
properties,

Our restructuring heuristic, called splaying, is similar 10 move-to-root in that it
does rotations bottom-up along the access path and moves the accessed item all
the way to the root. But it differs in that it does the rotations in pairs, in an order
that depends on the structure of the access path. To splay a tree at a node x, we
repeat the following splaying step until x is the root of the tree (sce Figure 3):

Splaying Step

Case 1 (zig). If p(x), the parent of x, is the tree root, rotate the edge joining x with p(v).
(This case is terminal.)

656 D. D. SLEATOR AND R. E. TARJAN

y X
x / y
3 R A
A)] Cc
(a)
X
A\
A z
/ | ®
. [2}
(b)
X
—_— Y z

(c)

FiG. 3. A splaying step. The node accessed is x. Each case has a symmetric
vaniant (not shown). (a) Zig: terminating single rotation. (b) Zig-zig: two
single rotations. (c) Zig-zag: double rotation.

Case 2 (zig~zig). If p(x) is not the root and x and p(x) are both left or both right children,

rotate the edge joining p{(x) with its grandparent g(x) and then rotate the edge joining
x with p(x).

Case 3 (zig-zag). If p(x) is not the root and x is a left child and p{x) a right child, or vice-

versa, rotate the edge joining x with p(x) and then rotate the edge joining x with the
new p(x).

Splaying at a node x of depth d takes O(d) time, that is, time proportional to
the time to access the item in x. Splaying not only moves x to the root, but roughly
halves the depth of every node along the access path. (See Figures 4 and 5.) This
halving effect makes splaying efficient and is a property not shared by other, simpler
heuristics, such as move to root. Producing this effect seems to require dealing with
the zig-zig and zig-zag cases differently.

We shall analyze the amortized complexity of splaying by using a potential
Junction 31, 35] to carry out the amortization. The idea is to assign to each possible
configuration of the data structure a real number called its potential and to define
the amortized time a of an operation by a =t + &’ — &, where ¢ is the actual time
of the operation, ¢ is the potential before the operation, and &’ is the potential

after the operation. With this definition, we can estimate the total time of a
sequence of m operations by

E’j=Z(aj*“bj-x“!’;):Eaj“'d’o“bm,
= = =

ow v o— e

- —

Self-Adjusting Binary Search Trees 657

(b)

FIG. 5. Extreme cases of splaying. (a) All zig-zig steps. (b) All zig-zag steps.

where 1, and g, are the actual and amortized times of operation j, &, is the initial
potential, and ¢, for j = 1 is the potential after operation j. That is, the total actual
time equals the total amortized time plus the net decrease in potential from the
initial 1o the final configuration. If the final potential is no less than the initial
potential. then the total amortized time is an upper bound on the total actual time.

658 D. D. SLEATOR AND R. E. TARJAN

To define the potential of a splay tree, we assume that each item / has a positive
weight w{i), whose value is arbitrary but fixed. We define the size s(x) of a node x
in the tree to be the sum of the individual weights of all items in the subtree rooted
at x. We define the rank r(x) of node x to be log s(x).! Finally, we define the
potential of the tree to be the sum of the ranks of all its nodes. As a measure of the
running time of a splaying operation, we use the number of rotations done, unless
there are no rotations, in which case we charge one for the splaying.

LEMMA 1 (ACCESS LEMMA). The amortized time to splay a tree with root t at a
node x is at most 3(r(t) — r(x)) + 1 = O(log(s()/s(x))).

Proor. If there are no rotations, the bound is immediate. Thus suppose there
is at least one rotation. Consider any splaying step. Let 5 and s’, r and r’ denote
the size and rank functions just before and just after the step, respectively. We
show that the amortized time for the step is at most 3(r*(x) — r(x)) + 1 in case 1
and at most 3(r’(x) — r(x)) in case 2 or case 3. Let y be the parent of x and z be
the parent of y (if it exists) before the step.

Case 1. One rotation is done, so the amortized time of the step is

I+ r(x)+r'(y) -~ r{x)— (y) since only xand y
can change rank

1+ r'(x) - nx) since r(y)z r'(y)

1+ 3(r'(x) - H(x)) since r’(x) = r(x).

Case 2. Two rotations are done, so the amortized time of the step is

2+ X))+ () +r2)
= r{x}y—=r(y) = r(2) since only x, y, and z
can change rank
=2+ +r@)-rx)-rQy since r'(x) = r(2)
S2+7X)+r(2) - 2r(x) since r'(x) = r'(y)
and r(}) = r(x).

We claim that this last sum is at most 3(r’ (x) — r(x)), that is, that 2r"(x) = r(x) —
r’(z) = 2. The convexity of the log function implies that log x + log y for x, y > 0,
x+ y =<1 is maximized at value =2 when x = y =4 It follows that r(x) + r'(z) —
2r'(x) = log(s(x)/s’(x)) + log(s’(z)/s’ (x)) < -2, since s(x) + 5'(2) = §'(x). Thus
the claim is true, and the amortized time in case 2 is at most 3r' (x) = r(x).

Case 3. The amortized time of the step is

2+ +rp)+r@
= r(x) = r(y) = 1(2)
=2+70)+r) - 2r(x) since r'(x) = r(z)
and r(x) = r(y).
We claim that this last sum is at most 2(r’ (x) = r(x)), that is, that 2r'(x) — r'(y) -

r’(z) = 2. This follows as in case 2 from the inequality s’ () + s’ (z) < s’ (x). Thus
the amortized time in case 3 is at most 2(+’(x) — r(x)) < 3(r'(x) — r(x)).

A 1A

The lemma follows by summing the amortized time estimates for all the splaying
steps, since the sum telescopes to yield an estimate of at most rx)y—r(x) + 1
= 3(r(r) = r(x)) + 1, where r and r’ are the rank functions before and after the
entire splaying operation, respectively. O

' Throughout this paper we use binary logarithms.

1 b v bt et e ame b

Self-Adjusting Binary Search Trees 659

The analysis in Lemma | shows that the zig-zig case is the expensive case of a
splaying step. The analysis differs from our original analysis [28] in that the
definition of rank uses the continuous instead of the discrete logarithm. This gives
us a bound that is tighter by a factor of two. The idea of tightening the analysis in
this way was also discovered independently by Huddleston [17].

The weights of the items are parameters of the analysis, not of the algorithm:
Lemma | holds for any assignment of positive weights to items. By choosing
weights cleverly, we can obtain surprisingly strong results from Lemma 1. We shall
give four examples. Consider a sequence of m accesses on an n-node splay tree. In
analyzing the running time of such a sequence, it is useful to note that if the
weights of all items remain fixed, then the net decrease in potential over the
sequence is at most Y7, log(W/w(i)), where W = Y7, w(i), since the size of the
node containing item /7 is at most W’ and at least w(i).

THEOREM | (BALANCE THEOREM). The total access time is O((m + n)log
n+ m).

PROOF. Assign a weight of 1/n to each item. Then W = 1, the amortized access
time i1s at most 3 log n + | for any item, and the net potential drop over the
sequence is at most n log n. The theorem follows. O

For any item i, let ¢(i) be the access frequency of item i, that is, the total number
of times i is accessed.

THEOREM 2 (STATIC OPTIMALITY THEOREM). If every item is accessed at least
once, then the total access time is

ol ()

PROOF. Assign a weight of g(i)/m to item i. Then W = |, the amortized acce;ss
time of item i is O(log(m/q(i))), and the net botential drop over the sequence is at
most Yr., log(m/q(i)). The theorem follows. O

Assume that the items are numbered from 1 through n in symmetric order. Let
the sequence of accessed items be Iy, iz, ..., ip.

THEOREM 3 (STATIC FINGER THEOREM). If fis any fixed item, the total access
timeis O(nlogn+ m+ Y% log(1i;—f| + 1))

PROOF. Assign a weight of 1/(}i— f] + 1)’ toitem i. Then W < 235, 1/k% =
O(1), the amortized time of the jth access is O(log(]i, — f| + 1)), and the net
potential drop over the sequence is O(n log n), since the weight of any item is at
least 1/n%. The theorem follows. O

We can obtain another interesting result by changing the item weights as the
accesses take place. Number the accesses from 1 1o m in the order they occur. For
any access J, let {(j) be the number of different items accessed before access j since
the last access of item i, or since the beginning of the sequence if j is the first of
item J;. (Note that 1(j) + i is the position of item J; in a linear list maintained by
the move-to-front heuristic [30] and initialized in order of first access.)

THEOREM 4 (WORKING SET THEOREM). The total access time is O(n log n +
m+ 37, log(u(j) + 1)).

660 D. D. SLEATOR AND R. E. TARJAN

PROOF. ~ Assign the weights 1, 1/4,1/9, ..., 1/n? to the items in order by first
access. (The item accessed earliest gets the largest weight; any items never accessed
get the smallest weights.) As each access occurs, redefine the weights as follows.
Suppose the weight of item i; during access j is 1/k% After access j, assign weight 1
to i, and for each item i having a weight of 1/(k’)® with k’ < k, assign weight
1/(k’ + 1) to i. This reassignment permutes the weights 1, 1/4, 1/9, ..., 1/n?
among the items. Furthermore, it guarantees that, during access J» the weight of
item £, will be 1/(1()) + 1)*. We have W= Y7, 1/k? = O(1), so the amortized time
of access j is O(log(1(j) + 1)). The weight reassignment after an access increases
the weight of the item in the root (because splaying at the accessed item moves it
to the root) and only decreases the weights of other items in the tree. The size of
the root is unchanged, but the sizes of other nodes can decrease. Thus the weight
reassignment can only decrease the potential, and the amortized time for weight
reassignment is either zero or negative. The net potential drop over the sequence
is O(n log n). The theorem follows. [}

Let us interpret the meaning of these theorems. The balance theorem states that
on a sufficiently long sequence of accesses a splay tree is as efficient as any form of
uniformly balanced tree. The static optimality theorem implies that a splay tree is
as efficient as any fixed search tree, including the optimum tree for the given access
sequence, since by a standard theorem of information theory [1] the total access
time for any fixed tree is Q(m + Y1 q(i)log(m/q(i))). The static finger theorem
states that splay trees support accesses in the vicinity of a fixed finger with the
same efficiency as finger search trees. The working set theorem states that the time
10 access an item can be estimated as the logarithm of one plus the number of
different items accessed since the given item was last accessed. That is, the most
recently accessed items, which can be thought of as forming the “working set,” are
the easiest to access. All these results are to within a constant factor.

Splay trees have all these behaviors automatically; the restructuring heuristic is
blind to the properties of the access sequence and to the global structure of the
tree. Indeed, splay trees have all these behaviors simultaneously; at the cost of a
constant factor we can combine all four theorems into one.

THEOREM 5 (UNIFIED THEOREM). The total time of a sequence of m accesses
on an n-node splay tree is

O<n logn+m+ ¥ log min {ﬁ, li=f1+ 1, 1)) + l}),)
=t 1)
where fis any fixed item.

PROOF. Assign to each item a weight equal to the sum of the weights assigned
to it in Theorems 2-4 and combine the proofs of these theorems. [J

Remark. Since |i,— f| <n, Theorem § implies Theorem 1 as well as Theorems
2-4.If each item is accessed at least once, the additive term 7 log 7 in the bound
of Theorem 5 can be dropped.

3. Update Operations on Splay Trees

Using splaying, we can implement all the standard update operations on binary
search trees. We consider the following operations:

access(i, 1): If item i is in tree 1, return a pointer to its location; otherwise, return
a pointer to the null node.

Self-Adjusting Binary Search Trees 661

FIG. 6. Splaving after an unsuccessful access of item 80.

inseri(i, 1): Insert item 7 in tree ¢, assuming that it is not there already.
deleie(i, 1): Delete item i from tree 1, assuming that it is present.

Join(t,, 12 Combine trees /, and 1. into a single tree containing all items from
both trees and return the resulting tree. This operation assumes that
all items in ¢, are less than all those in 1; and destroys both 1, and r-.

split(i, 1): Construct and return two trees 7, and 15, where 7, contains all items
in 1 less than or equal to /, and ¢, contains all items in 7 greater than
1. This operation destroys 1.

We can carry out these operations on splay trees as follows. To perform ac-
cess(i, 1). we search down from the root of 7, looking for i. If the search reaches a
node x containing i, we complete the access by splaying at x and returning a pointer
to x. If the search reaches the null node, indicating that i is not in the tree. we
complete the access by splaying at the last nonnull node reached duning the search
(the node from which the search ran off the bottom of the tree) and returning a
pointer to null. If the tree is empty, we omit the splaying operation. (See Figure 6.)

Splaying’s effect of moving a designated node 1o the root considerably simplifies
the updating of splay trees. It is convenient 10 implement inserr and delete using
Join and split. To carry out join(1,, 1,). we begin by accessing the largest item. say

662 D. D. SLEATOR AND R. E. TARJAN

N N N

4 t2
(a)

o 2 K}s — £a"ad

' h t LIRR F
(b)

Fic. 7. Implementation of join and split. (a) join(t,, 1;). (b)
splitgi, 1).

access join
n m JANIAN A

(b)

FiG. 8. Implementation of insertion and deletion using join
and split: (a) inser1(i, t). (b) delete(i, t).

i, in 1,. After the access, the root of 1, contains i and thus has a null right child. We
complete the join by making ¢, the right subtre¢ of this root and returning the
resulting tree. To carry out split(i, 1), we perform access(i, {) and then return the
two trees formed by breaking either the left link or the right link from the new root
of 1, depending on whether the root contains an item greater than i or not greater
than i. (See Figure 7.) In both join and split we must deal specially with the case
of an empty input tree (or trees).

To carry out insert(i, t), we perform spli(i, f) and then replace ¢ by a tree
consisting of a new root node containing i, whose left and right subtrees are the
trees ; and f; returned by the split. To carry out delete(i, t), we perform ac-
cess(i, t) and then replace ¢ by the join of its left and right subtrees. (See Figure 8.)

There are alternative implementations of insert and delete that have slightly
better amortized time bounds. To carry out insert(i, t), we search for i, then replace
the pointer to null reached during the search by a pointer to a new node containing
i, and finally splay the tree at the new node. To carry out delete(i, 1), we search for
the node containing /. Let this node be x and let its parent be y. We replace x as a
child of y by the join of the left and right subtrees of x, and then we splay at y. (See
Figure 9.)

. — s e,

Self-Adjusting Binary Search Trees 663

JOIN
CHILDREN
OF 30

F1G. 9. Alternative implementations of insertion and deletion. Inscrtion of 80 fol-
lowed by dcletion of 30.

In analyzing the amortized complexity of the various operations on splay trees,
let us assume that we begin with a collection of empty trees and that every item is
only in one tree at a time. We define the potential of a collection of trees to be the
sum of the potentials of the trees plus the sum of the logarithms of the weights of
all items not currently in a tree. Thus the net potentiai drop over a sequence of
operations is at most Y ey log(w(i)/w’ (i), where U is the universe of possible items
and w and w’, respectively, are the initial and final weight functions. In particular,
if the item weights never change, the net potential change over the sequence is
nonnegative,

For any item i in a tree ¢, let i— and i+, respectively, denote the item preceding
i and the item following i in ¢ (in symmetric order). If i— is undefined, let w(i-) =
e; if i+ is undefined, let w(i+) = e,

LEMMA 2 (UPDATE LEMMA). The amortized times of the splay tree operations
have the following upper bounds, where W is the total weight of the items in the

664 D. D. SLEATOR AND R. E. TARJAN

tree or trees involved in the operation:

3 log(wl.) + 1 if iisint;

access(i, 1):

+ 1 if fisnotint.

s i)
%\ miniw(i=), w(i+))

u/
Join(ty, 1) 3 Iog(w (i)) + (1), where i is the last item in t,.
W o
3/0g<75)+0(l) if iisint,
split(i, 1):

)+O(l) if iisnotint.

(w

min{w(i-), w(i+))
W~ w(i) w

<mintw(i—), w<i+)}) + log (W)) + o).

delete(i, 1): 3 log(u?;)) +3 Iog(%w)(—i)) + ().

insert(i. 1) 3 log

Increasing the weight of the item in the root of a tree t by an amount & takes at
most log(1 +6/W) amortized time, and decreasing the weight of any item takes
negative amortized time.

PROOF. These bounds follow from Lemma | and a straightforward analysis of
the potential change caused by each operation. Let s be the size function just before
the operation. In the case of an access or split, the amortized time is at most 3
log(s(1)/s(x)) + 1 by Lemma 1, where x is the node at which the tree is splayed. If
item / is in the tree, it is in x, and s(x) = w(i). If i is not in the tree, either i— or i+
is in the subtree rooted at x, and s(x) = min{w(i-), w(i+)}. This gives the bound
on access and split. The bound on join is immediate from the bound on access:
the splaying time s at most 3 log(s(#,)/w(i)) + 1, and the increase in potential
caused by linking t; and 1, is

) + () _ 4, (W
log< S0)) <3 log(s(’l)).

(We have W = (1) + s5(12).) The bound on insert also follows from the bound on
access: the increase in potential caused by adding a new root node containing i is

s+wi)_, (W
o) - o)

The bound on delete is immediate from the bounds on access and Join. OO

Self-Adjusting Binary Search Trees 665

Remark. The alternative implementations of insertion and deletion have the
following upper bounds on their amortized times:

. . W — w(i) w
insert(i, t). 2 log(min{u(i—), "(H')l) + Iog(“(i)) + O(1).

W - w(i)
min{u(i-), w(i))

These bounds follow from a modification of the proof of Lemma 1. For the case
of equal-weight items, the alternative forms of insertion and deletion each take at
most 3 log n + O(1) amortized time on a n-node tree. This bound was obtained
independently by Huddleston [17] for the same insertion algonthm and a slightly
different deletion algorithm.

delete(i, 1) 3 log() + O(1).

The bounds in Lemma 2 are comparable to the bounds for the same operations
on biased trees [7, 8, 13], but the biased tree algorithms depend explicitly on the
weights. By using Lemma 2, we can extend the theorems of Section 2 in various
ways to include update operations. (An exception is that we do not see how to
include deletion in a theorem analogous to Theorem 3.) We give here only the
simplest example of such an extension.

THEOREM 6 (BALANCE THEOREM WITH UPDATES). A sequence of m arbitrary
operations on a collection of initially empty splay trees takes O(m + 21 log n)
time, where n; is the number of items in the tree or trees involved in operation j.

PROOF. Assign to each item a fixed weight of one and apply Lemma 2. 0O

We can use splay trees as we would use any other binary search tree; for example,
we can use them to implement various abstract data structures consisting of sorted
sets or lists subject to certain operations. Such structures include dictionaries, which
are sorted sets with access, insertion, and deletion, and concatenatable queues,
which are lists with access by position, insertion, deletion, concatenation, and
splitting [3, 22]. We investigate two further applications of splaying in Section 6.

4. Implementations of Splaying and Its Variants

In this section we study the implementation of splaying and some of its variants.
Our aim is to develop a version that is easy to program and efficient in practice.
As a programming notation, we shall use a version of Dijkstra’s guarded command
language [12], augmented by the addition of procedures and “initializing guards”
(G. Nelson, private communication). We restrict our attention to successful ac-
cesses, that is, accesses of itemns known to be in the tree.

Splaying, as we have defined it, occurs during a second, bottom-up pass over an
access path. Such a pass requires the ability to get from any node on the access
path to its parent. To make this possible, we can save the access path as it is
traversed (either by storing it in an auxiliary stack or by using “pointer reversal”
to encode it in the tree structure), or we can maintain parent pointers for every
node in the tree. If space is expensive, we can obtain the effect of having parent
pointers without using extra space, by storing in each node a pointer to its leftmost
child and a pointer to its right sibling, or to its parent if it has no nght sibling. (See
Figure 10.) This takes only two pointers per node, the same as the standard left-
child-right-child representation, and allows accessing the left child, right child. or

